Alkyne-based derivatives of $\left[\mathrm{R} \mathrm{u}_{6} \mathrm{C}(\mathrm{CO})_{17}\right]$ and the stepwise synthesis of $\left[\mathrm{R} \mathrm{u}_{6} \mathrm{C}(\mathrm{CO})_{13}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Ph}_{2}\right)\left(\mu_{3}-\mathrm{CPh}\right)\right]$

Alexander J. Blake, J ane L. H aggitt, Brian F. G. J ohnson*' \dagger and Simon Parsons
D epartment of Chemistry, The U niversity of E dinburgh, W est M ains R oad, Edinburgh EH 9 3JJ, UK

Abstract

A systematic synthetic route to the hexanuclear cluster compound $\left[R u_{6} C(C O)_{13}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Ph}_{2}\right)\left(\mu_{3}-\mathrm{CPh}\right)\right]$ has been

 elaborated in which a number of stable intermediates have been isolated and characterised. The reaction of $\left[R u_{6} \mathrm{C}(\mathrm{CO})_{17}\right]$ with $\mathrm{M}_{3} \mathrm{NO}$ and phenylacetylene afforded the alkyne derivative $\left[R \mathrm{u}_{6} \mathrm{C}(\mathrm{CO})_{15}\left(\mathrm{PhC}_{2} \mathrm{H}\right)\right] 1$. Further treatment of 1 with $\mathrm{M}_{3} \mathrm{NO}$ and an excess of phenylacetylene resulted in the formation of two isomers $\left[R u_{6} \mathrm{C}(\mathrm{CO})_{14}\{\mathrm{C}(\mathrm{Ph}) \mathrm{CHC}(\mathrm{Ph}) \mathrm{CH}\}\right] 2$ and $\left[R u_{6} \mathrm{C}(\mathrm{CO})_{14}\{\mathrm{C}(\mathrm{Ph}) \mathrm{CHCHC}(\mathrm{Ph})\}\right]$ 3. Both contain five membered metallocyclic rings formed by the head-to-head coupling of phenylacetylene in one isomer and the head-to-tail coupling in the other. Reaction of isomer $\mathbf{2}$ with $\mathrm{M}_{3} \mathrm{NO}$ and phenylacetylene leads to $\left[\mathrm{Ru} \mathrm{u}_{6} \mathrm{C}(\mathrm{CO})_{13}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Ph}_{2}\right)\right.$ -$\left.\left(\mu_{3}-\mathrm{CPh}\right)\right]$ 4. The molecular structure of one of the isomers, 3, has been established by single-crystal X-ray crystallography.A rene derivatives of $\left[R u_{6} C(C O)_{17}\right]$, e.g. $\left[R u_{6} C(C O)_{14}\left(\eta^{6}\right.\right.$-arene $\left.)\right]$, have been well documented ${ }^{1-4}$ and can be synthesized, for example, by the thermolysis of $\left[R u_{3}(\mathrm{CO})_{12}\right]$ in the presence of an arene. ${ }^{1}$ We have been interested to see whether or not these arene derivatives may also be obtained from the trimerisation of alkynes, a process which has been observed with mononuclear complexes ${ }^{5}$ and more recently in the reaction of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{9}(\mathrm{M} \mathrm{eCN})_{3}\right]$ with disubstituted alkynes. ${ }^{6}$ The reaction of $\left[R u_{6} \mathrm{C}(\mathrm{CO})_{17}\right]$ with dimethylacetylene leads to the formation of $\left[R u_{6} \mathrm{C}(\mathrm{CO})_{15}\left(\mathrm{M} \mathrm{eC}{ }_{2} \mathrm{Me}\right)\right], \quad\left[R \mathrm{u}_{6} \mathrm{C}(\mathrm{CO})_{13}\left(\mathrm{M} \mathrm{eC}_{2} \mathrm{Me}\right)_{2}\right], \quad\left[R u_{6}{ }^{-}\right.$ $\left.\mathrm{C}(\mathrm{CO})_{12}\left(\mathrm{M} \mathrm{eC}_{2} \mathrm{Me}\right)_{3}\right]$ and $\left[R u_{6} \mathrm{C}(\mathrm{CO})_{10}\left(\mathrm{M} \mathrm{eC}_{2} \mathrm{Me}\right)_{4}\right]$ where the direct substitution of carbonyl ligands by dimethylacetylene occurs with no apparent evidence of oligomerisation. ${ }^{7}$ We have found however that the reaction of $\left[\mathrm{Ru} \mathrm{G}_{6} \mathrm{C}(\mathrm{CO})_{17}\right]$ with phenylacetylene proceeds via a different pathway and recently reported the structure of $\left[R u_{6} \mathrm{C}(\mathrm{CO})_{13}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Ph} h_{2}\right)\left(\mu_{3}-\mathrm{CPh}\right)\right]$ in which $\mathrm{C} \equiv \mathrm{C}$ bond scission and oligomerisation occur to form both an η^{5}-bound diphenylcyclopentadienyl ligand and a $\mu_{3}{ }^{-}$ bound CPh alkylidyne ligand (see Fig. 1). ${ }^{8}$ In this paper we report the detailed results of this reaction, including the isolation and characterisation of two isomers, $\left[\mathrm{Ru} \mathrm{u}_{6} \mathrm{C}(\mathrm{CO})_{14} \mathrm{CC}(\mathrm{Ph})\right.$ $\mathrm{CHC}(\mathrm{Ph}) \mathrm{CH}\}]$ and $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{14}\{\mathrm{C}(\mathrm{Ph}) \mathrm{CHCHC}(\mathrm{Ph})\}\right]$, the first of which is the precursor to $\left[R u_{6} \mathrm{C}(\mathrm{CO})_{13}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Ph}_{2}\right)\right.$ (μ_{3}-CPh)].

Results and Discussion

The reaction of $\left[\mathrm{Ru} \mathrm{C}_{6} \mathrm{C}(\mathrm{CO})_{17}\right]$ with phenylacetylene is shown in Scheme 1 and spectroscopic data for all compounds reported are given in Table 1. In all reactions $\mathrm{Me}_{3} \mathrm{NO}$ is employed as an oxidative decarbonylation reagent. Treatment of $\left[R u_{6} \mathrm{C}(\mathrm{CO})_{17}\right]$ with 2 molar equivalents of $\mathrm{Me}_{3} \mathrm{NO}$ in the presence of an excess of phenylacetylene results primarily in the formation of $\left[R u_{6}\right.$ $\left.\mathrm{C}(\mathrm{CO})_{15}\left(\mathrm{PhC}_{2} \mathrm{H}\right)\right] 1$ in 25% yield. This is a known compound, previously synthesized from the oxidation of $\left[\mathrm{Ru} \mathrm{C}_{6}(\mathrm{CO})_{16}\right]^{2-}$ with $\left[\mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+}$in the presence of phenylacetylene ${ }^{9}$ In it the phenylacetylene behaves as a four-electron donor, exhibiting an $\mu_{3}-\eta^{2}$ bonding mode, one of the most common modes observed on a triangular face of metal atoms. ${ }^{10,11}$ Three minor products, $\left[\mathrm{Ru} \mathrm{u}_{6} \mathrm{C}(\mathrm{CO})_{14}\{\mathrm{C}(\mathrm{Ph}) \mathrm{CHC}(\mathrm{Ph}) \mathrm{CH}\}\right]$ 2, $\left[\mathrm{Ru} \mathrm{K}_{6} \mathrm{C}(\mathrm{CO})_{14}-\right.$ $\{\mathrm{C}(\mathrm{Ph}) \mathrm{CHCHC}(\mathrm{Ph})\}] 3$ and $\left[\mathrm{Ru} \mathrm{C}_{6}(\mathrm{CO})_{13}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Ph}_{2}\right)\left(\mu_{3}-\right.\right.$

[^0]

Fig. 1 M olecular structure of $\left[R u_{6} C(C O)_{13}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Ph}_{2}\right)\left(\mu_{3}-\mathrm{CPh}\right)\right]$
CPh)] 4 are also formed during this reaction, although in very low yield. Further treatment of 1 with 2 equivalents of $\mathrm{Me}_{3} \mathrm{NO}$ and phenylacetylene leads to the formation of 2-4 in greater yield. The spectroscopic data for compounds $\mathbf{2}$ and $\mathbf{3}$ are consistent with the formation of two isomers in which a second acetylene has been incorporated into the system to form fivemembered metallacyclopentadiene rings. The FAB mass spectra reveal the same molecular ion peak and the solution IR spectra in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ are very similar showing evidence of both terminal and bridging $\left[v(C O) \approx 1850 \mathrm{~cm}^{-1}\right]$ carbonyl ligands. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ consists of resonances due to the phenyl rings and also doublets at $\delta 10.09$ and 6.69 corresponding to H^{2} and H^{1} respectively. The spectrum of $\mathbf{3}$ consists of a singlet at $\delta 5.43$ corresponding to H^{1}. The metallocyclic ring is formed from the head-to-tail coupling of phenylacetylene in the case of compound $\mathbf{2}$ and the head-to-head coupling of phenylacetylene in 3.

Unfortunately, crystals of compound 2 suitable for X-ray analysis could not be obtained, although a structure of the analogous tert-butylacetylene compound has been determined ${ }^{12}$ and we expect that of 2 to be similar. The molecular

Table 1 Spectroscopic data

	Compound	IR ${ }^{\text {a }}$, $\tilde{\mathrm{v}}(\mathrm{CO}) / \mathrm{cm}^{-1}$	${ }^{1} \mathrm{H} N \mathrm{MR}{ }^{\text {b }}$, δ	FAB mass spectrum, $\mathrm{m} / \mathrm{z}^{\mathrm{c}}$
1	$\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{15}\left(\mathrm{PhC}_{2} \mathrm{H}\right)\right.$]	2089m, 2045vs, 2038s (sh), 2022m, 2015m, 1989w	10.18 (s, 1 H), 7.49-7.37 (m, 5 H)	$\begin{aligned} & 1140 \\ & (1140) \end{aligned}$
2	$\left[\mathrm{Ru} \mathrm{u}^{\mathrm{C}}(\mathrm{CO})_{14}\{\mathrm{C}(\mathrm{Ph}) \mathrm{CHC}(\mathrm{Ph}) \mathrm{CH}\}\right]$	2080m, 2045s, 2033vs, 1984w, 1960w, 1850w (br)	$\begin{aligned} & 10.09(\mathrm{~d}, 1 \mathrm{H}), 7.86-7.10(\mathrm{~m}, \\ & 10 \mathrm{H}), 6.69(\mathrm{~d}, 1 \mathrm{H})^{\mathrm{d}} \end{aligned}$	$\begin{aligned} & 1215 \\ & (1214) \end{aligned}$
3	$\left[\mathrm{Ru} \mathrm{E}_{6} \mathrm{C}(\mathrm{CO})_{14}\{\mathrm{C}(\mathrm{Ph}) \mathrm{CHCHC}(\mathrm{Ph})\}\right]$	2079m, 2044s, 2033vs, 1983w (sh), 1848w	7.40-7.16 (m, 10 H), 5.43 (s, 2 H)	$\begin{aligned} & 1214 \\ & (1214) \end{aligned}$
4	$\left[R u_{6} \mathrm{C}(\mathrm{CO})_{13}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Ph}_{2}\right)\left(\mu_{3}-\mathrm{CPh}\right)\right]$	2073m, 2031s, 2019m, 2000w, 1981w (sh), 1959 (w)	$\begin{aligned} & 7.77-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.11(\mathrm{~m}, \\ & 10 \mathrm{H}), 5.64(\mathrm{t}, 1 \mathrm{H}), 5.45(\mathrm{~d}, 2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1286 \\ & \text { (1288) } \end{aligned}$

Table 2 Bond lengths (\AA) for compound 3

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.772(1)$	$\mathrm{Ru}(4)-\mathrm{C}(1)$	$2.03(1)$
$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$2.782(1)$	$\mathrm{Ru}(5)-\mathrm{C}(1)$	$2.04(1)$
$\mathrm{Ru}(1)-\mathrm{Ru}(4)$	$2.779(1)$	$\mathrm{Ru}(6)-\mathrm{C}(1)$	$1.992(9)$
$\mathrm{Ru}(1)-\mathrm{Ru}(5)$	$3.017(1)$	$\mathrm{Ru}(1)-\mathrm{C}(12)$	$2.120(9)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.802(1)$	$\mathrm{Ru}(1)-\mathrm{C}(15)$	$2.064(9)$
$\mathrm{Ru}(2)-\mathrm{Ru}(5)$	$2.894(1)$	$\mathrm{Ru}(2)-\mathrm{C}(12)$	$2.126(9)$
$\mathrm{Ru}(2)-\mathrm{Ru}(6)$	$2.968(1)$	$\mathrm{Ru}(2)-\mathrm{C}(13)$	$2.251(8)$
$\mathrm{Ru}(3)-\mathrm{Ru}(4)$	$2.947(1)$	$\mathrm{Ru}(3)-\mathrm{C}(14)$	$2.217(8)$
$\mathrm{Ru}(3)-\mathrm{Ru}(6)$	$2.911(1)$	$\mathrm{Ru}(3)-\mathrm{C}(15)$	$2.204(9)$
$\mathrm{Ru}(4)-\mathrm{Ru}(5)$	$2.886(1)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.430(13)$
$\mathrm{Ru}(4)-\mathrm{Ru}(6)$	$2.965(1)$	$\mathrm{C}(12)-\mathrm{C}(121)$	$1.483(13)$
$\mathrm{Ru}(5)-\mathrm{Ru}(6)$	$2.848(1)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.463(12)$
$\mathrm{Ru}(1)-\mathrm{C}(1)$	$2.084(9)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.435(13)$
$\mathrm{Ru}(2)-\mathrm{C}(1)$	$2.03(1)$	$\mathrm{C}(15)-\mathrm{C}(151)$	$1.472(12)$
$\mathrm{Ru}(3)-\mathrm{C}(1)$	$2.06(1)$		

2
${ }^{(i i)}$

4

Scheme 1 Synthesis of alkyne-based derivatives of $\left[R u_{6} \mathrm{C}(\mathrm{CO})_{17}\right]$: (i) 2 equivalents $\mathrm{M}_{3} \mathrm{NO}, \mathrm{PhC}_{2} \mathrm{H}$; (ii) $\mathrm{Me}_{3} \mathrm{NO}, \mathrm{PhC}_{2} \mathrm{H}$
structure of $\mathbf{3}$ has been established (Fig. 2) and selected bond lengths are given in Table 2. It consists of an octahedron of ruthenium atoms with an interstitial carbido atom. There are fourteen carbonyl groups, of which thirteen are terminal and one is bridging. The CO ligands are essentially linear and the bridging CO is slightly asymmetric $[\mathrm{Ru}(1)-\mathrm{C}(41) 2.058(10)$,

Fig. 2 M olecular structure of $\left[R u_{6} C(C O)_{14}\{\mathrm{C}(\mathrm{Ph}) \mathrm{CHCHC}(\mathrm{Ph})\}\right] 3$ with the hydrogen atoms omitted for clarity. The C atoms of the carbonyl groups bear the same numbering as that of the corresponding 0 atoms
$\operatorname{Ru}(4)-C(41) 2.107(9) \AA$]. The Ru-Ru bond lengths lie in the range 2.772(1)-3.017(1) \AA, with the three shortest associated with $\mathrm{Ru}(1)$. The structure contains a ruthenacyclopentadiene ring which lies across one of the triangular faces $[\mathrm{Ru}(1)-$ $R u(2)-R u(3)]$ of the octahedron. This ring is formed by the head-to-head linking of two phenylacetylene ligands and incorporates the $\mathrm{Ru}(1)$ atom. There are two σ bonds to $\mathrm{Ru}(1)$ $[R u(1)-C(12), R u(1)-C(15)]$ and two π bonds $C(12)-C(13)$ bound to $R u(2)$ and $C(14)-C(15)$ to $R u(3)$. The ruthenacyclopentadiene moiety is not bound symmetrically to the triangular face, the two σ bonds $R u(1)-C(12)$ and $R u(1)-C(15)$ having values of 2.120(9) and 2.064(9) \AA respectively. One of the π interactions is also asymmetric $[\mathrm{Ru}(2)-\mathrm{C}(12) 2.126(9)$, $\operatorname{Ru}(2)-\mathrm{C}(13) 2.251(8) \AA]$. These features have also been observed in the trinuclear osmium cluster $\left[\mathrm{OS}_{3}(\mathrm{CO})_{9}{ }^{-}\right.$ $\left.\left\{\mathrm{C}\left(\mathrm{SiM} \mathrm{e}_{3}\right) \mathrm{C}(\mathrm{Me}) \mathrm{CHC}(\mathrm{Ph})\right\}\right]{ }^{13}$ The dihedral angle of the metallocyclic ring [between the $\mathrm{C}(12)-\mathrm{Ru}(1)-\mathrm{C}(15)$ and $C(12)-C(13)-C(14)-C(15)$ planes] is 31.4° and the $C-C$ bond lengths within the ring lie in the range 1.43(1)-1.46(1) \AA. A gain these values are very similar to those found in $\left[\mathrm{OS}_{3}(\mathrm{CO})_{9}-\right.$ $\left.\left\{\mathrm{C}\left(\mathrm{SiM}_{3}\right) \mathrm{C}(\mathrm{Me}) \mathrm{CHC}(\mathrm{Ph})\right\}\right]$ and also in $\left[\mathrm{M} \mathrm{O}_{2} \mathrm{CO}_{2}(\mathrm{CO})_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{~S}_{3}(\mathrm{PhCCH})_{2}\right]$ and $\left[\left\{\mathrm{Ru}\left(\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right)(\mu-\mathrm{H})\right\}_{3}\left\{\mu_{3}-\eta^{4}-\right.\right.$ $\mathrm{C}(\mathrm{Me}) \mathrm{CHCHCH}\}] \cdot{ }^{14,15}$ In this system the organo-ligand behaves as a six-electron donor giving an electron count of 86, characteristic of these octahedral carbido-clusters.
To summarise, the addition of phenylacetylene to [$\left.R u_{6} \mathrm{C}(\mathrm{CO})_{17}\right]$ initially leads to a monosubstituted compound where the alkyne is bound in a $\mu_{3}-\eta^{2}$ mode, which is then followed by the formation of a metallacyclopentadiene ring. This
system has also been observed in the synthesis of $\left[\mathrm{M}_{2} \mathrm{CO}_{2}\right.$ $\left.(\mathrm{CO})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)_{2} \mathrm{~S}_{3}(\mathrm{PhCCH})_{2}\right]^{14}$ Further reaction of phenylacetylene and $\mathrm{Me}_{3} \mathrm{NO}$ with compound 3 leads solely to the recovery of starting material. The analogous reaction with isomer $\mathbf{2}$ however results in the formation of $\mathbf{4}$. Sequential addition of phenylacetylene to $\left[\mathrm{R} \mathrm{u}_{6} \mathrm{C}(\mathrm{CO})_{17}\right.$] therefore leads ultimately to oligomerisation to a substituted η^{5}-cyclopentadiene ring via two intermediates.

These reactions involving $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{17}\right]$ and phenylacetylene are unusual in several respects. First is the formation of the fivemembered metallacyclopentadiene ring as observed in compounds $\mathbf{2}$ and $\mathbf{3}$. This in itself is not uncommon in alkyne cluster chemistry, particularly in the reactions of certain trinuclear clusters. However, the formation of a metallacyclic ring facially bound on a triangular face is unusual, with only four other examples structurally characterised to date ${ }^{13-16}$ A nother interesting feature is the isolation and characterisation of two isomers on insertion of the second alkyne, whereas in previous examples only one isomer has been observed. These two compounds also represent the first examples of such a ring forming on a hexanuclear cluster compound. Finally, and as reported before, an important aspect of this work is the formation of $\left[R u_{6} \mathrm{C}(\mathrm{CO})_{13}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Ph}_{2}\right)\left(\mu_{3}-\mathrm{CPh}\right)\right] 4$ in which $\mathrm{C} \equiv \mathrm{C}$ bond scission and oligomerisation occur to form both an η^{5}-bound diphenylcyclopentadienyl ligand and a μ_{3}-bound CPh alkylidyne ligand. ${ }^{8}$ Such formation of substituted η^{5}-cyclopentadiene rings has been reported elsewhere, ${ }^{17-19}$ for example $\left[\mathrm{Pt}_{2} R u_{6}\left(\mu_{6}-\mathrm{C}\right)\right.$ (CO) $\left.{ }_{16}\left(\mu-\eta^{5}-\mathrm{C}_{5} \mathrm{Et}_{4}\right)\left(\mu_{3}-\mathrm{EtC}_{2} \mathrm{Et}\right)\right]$ exhibits a metallated tetraethyl cyclopentadienyl ligand derived from the coupling of two molecules of diethylacetylene with the fifth member of the ring derived from a carbido atom of a fragmented cluster. ${ }^{19}$ The number of examples where the alkyne oligomerises to give an organic cyclic ligand however remains very small.

Experimental

Reactions were routinely carried out using standard Schlenkline techniques under an atmosphere of nitrogen, with dry, dioxygen-free solvents. Products were separated using thinlayer chromatography (TLC) on plates supplied by Merck coated with a 0.25 mm layer of K ieselgel $60 \mathrm{~F}_{254}$. Phenylacetylene (Aldrich) was used without further purification. Infrared spectra were recorded on a Perkin-EImer 1600 Series FTIR spectrometer in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ using NaCl cells, positive-ion fast atom bombardment mass spectra using a K ratos M S50TC spectrometer, with Csl as calibrant, and ${ }^{1} \mathrm{H}$ NMR spectra on a Bruker A M - 250 spectrometer, referenced to internal SiM_{4}.

Syntheses

$\left[R u_{6} \mathrm{C}(\mathrm{CO})_{15}\left(\mathrm{PhC}_{2} \mathrm{H}\right)\right]$ 1. An excess of phenylacetylene (0.5 cm^{3}) was added to a solution of $\left[\mathrm{R} \mathrm{u}_{6} \mathrm{C}(\mathrm{CO})_{17}\right](150 \mathrm{mg}, 0.14$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(70 \mathrm{~cm}^{3}\right)$ and the mixture cooled to $-78^{\circ} \mathrm{C}$. A solution of $\mathrm{M}_{3} \mathrm{NO}$ ($23 \mathrm{mg}, 0.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added and the mixture allowed to warm to room temperature over 30 min . A fter filtering through silica, the solvent was removed under reduced pressure. The products were separated by TLC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (3:7) as eluent which yielded one major brown band of $\left[R u_{6} \mathrm{C}(\mathrm{CO})_{15}\left(\mathrm{PhC}_{2} \mathrm{H}\right)\right] \mathbf{1}(40 \mathrm{mg}, 0.035$ $\mathrm{mmol})$; a red band of $\left[\mathrm{Ru} \mathrm{u}_{6} \mathrm{C}(\mathrm{CO})_{14}\{\mathrm{C}(\mathrm{Ph}) \mathrm{CHC}(\mathrm{Ph}) \mathrm{CH}\}\right] \mathbf{2}(\approx 3$ mg) and a third band which, on further separation (TLC) using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane-ethyl acetate ($1: 8: 1$) as eluent, revealed $\left[R u_{6} \mathrm{C}(\mathrm{CO})_{14}\{\mathrm{C}(\mathrm{Ph}) \mathrm{CHCHC}(\mathrm{Ph})\}\right] \mathbf{3}(\approx 3 \mathrm{mg})$ and $\left[\mathrm{R} \mathrm{u}_{6} \mathrm{C}(\mathrm{CO})_{13}\right.$ $\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Ph}_{2}\right)\left(\mu_{3}-\mathrm{CPh}\right)\right] 4(\approx 2 \mathrm{mg})$.
$\left[\mathrm{Ru} \mathrm{C}_{6} \mathrm{C}(\mathrm{CO})_{14}\{\mathrm{C}(\mathrm{Ph}) \mathrm{CHC}(\mathrm{Ph}) \mathrm{CH}\}\right] \quad 2$ and $\left[\mathrm{Ru} \mathrm{C}_{6}(\mathrm{CO})_{14}\{\mathrm{C}\right.$. (Ph)CHCHC(Ph)\}] 3. An excess of phenylacetylene ($0.5 \mathrm{~cm}^{3}$) was added to a solution of $\left[R u_{6} \mathrm{C}(\mathrm{CO})_{15}\left(\mathrm{PhC}_{2} \mathrm{H}\right)\right] 1(150 \mathrm{mg}$, $0.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(70 \mathrm{~cm}^{3}\right)$ and the mixture cooled to $-78^{\circ} \mathrm{C}$. A solution of $\mathrm{M}_{3} \mathrm{NO}(23 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5$
cm^{3}) was added and the mixture allowed to warm to room temperature over 30 min . A fter filtering through silica, the solvent was removed under reduced pressure. Separation by TLC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ($3: 7$) as eluent yielded two bands. The first red band consisted of $\left[\mathrm{R} \mathrm{u}_{6} \mathrm{C}(\mathrm{CO})_{14}\{\mathrm{C}(\mathrm{Ph}) \mathrm{CHC}(\mathrm{Ph}) \mathrm{CH}\}\right] \mathbf{2}(30 \mathrm{mg}$, 0.025 mmol). Further purification of the second band using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane-ethyl acetate ($1: 8: 1$) as eluent revealed a red band of $\left[R u_{6} C(C O){ }_{14}\{\mathrm{C}(\mathrm{Ph}) \mathrm{CHCHC}(\mathrm{Ph})\}\right] 3(12 \mathrm{mg}, 0.01$ $\mathrm{mmol})$ and a green band of $\left[\mathrm{Ru} \mathrm{u}_{6} \mathrm{C}(\mathrm{CO})_{13}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Ph}_{2}\right)\left(\mu_{3}-\mathrm{CPh}\right)\right] 4$ $(10 \mathrm{mg}, 0.008 \mathrm{mmol})$.
$\left[R u_{6} \mathrm{C}(\mathrm{CO})_{13}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Ph}_{2}\right)\left(\mu_{3} \mathbf{- C P h}\right)\right] 4$. An excess of phenylacetylene $\left(0.5 \mathrm{~cm}^{3}\right)$ was added to a solution of $\left[R u_{6} \mathrm{C}(\mathrm{CO})_{14}-\right.$ $\{\mathrm{C}(\mathrm{Ph}) \mathrm{CHC}(\mathrm{Ph}) \mathrm{CH}\}] 2(30 \mathrm{mg}, 0.025 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70$ cm^{3}) and the mixture cooled to $-78^{\circ} \mathrm{C}$. A solution of $\mathrm{M}_{3} \mathrm{NO}$ ($2 \mathrm{mg}, 0.027 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added and the mixture allowed to warm to room temperature over 30 min . A fter filtering through silica, the solvent was removed under reduced pressure. The products were separated by TLC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane as eluent which yielded two bands, a red band of $\left[R u_{6} \mathrm{C}(\mathrm{CO})_{14}\{\mathrm{C}(\mathrm{Ph}) \mathrm{CHCHC}(\mathrm{Ph})\}\right]$ and a green band of $\left[R u_{6} \mathrm{C}(\mathrm{CO})_{13}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Ph}_{2}\right)\left(\mu_{3} \mathrm{CPh}\right)\right] 4(5 \mathrm{mg}, 0.004 \mathrm{mmol})$.

C rystallography

Crystals of $\left[\mathrm{Ru} \mathrm{u}_{6} \mathrm{C}(\mathrm{CO})_{14}\{\mathrm{C}(\mathrm{Ph}) \mathrm{CHCHC}(\mathrm{Ph})\}\right] 3$ suitable for X-ray analysis were grown from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane solution of the compound at $-20^{\circ} \mathrm{C}$.

Crystal data. $\mathrm{C}_{31} \mathrm{H}_{12} \mathrm{O}_{14} \mathrm{R} \mathrm{u}_{6} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{M}=1299.75$, monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{n}, \quad \mathrm{a}=13.653(2), \quad \mathrm{b}=14.996(3)$, $\mathrm{c}=18.775(3) \AA, \beta=108.939(12)^{\circ}, \mathrm{U}=3635.9(11) \AA^{3}$ (by leastsquares refinement of 2θ values for 56 reflections measured at $\pm \omega, \lambda=0.71073 \AA), Z=4, D_{c}=2.374 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~F}(000)=2464$. Dark red lath, dimensions $0.51 \times 0.19 \times 0.17 \mathrm{~mm}, \mu(\mathrm{Mo}$ o$\mathrm{K} \alpha)=2.643 \mathrm{~mm}^{-1}$.
Data were measured on a Stoë-Stadi-4 diffractometer using graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation and a $\omega-\theta$ scan mode at $150.0(2) \mathrm{K}$. A total of 4773 independent reflections were measured $\left(2.61 \leqslant \theta \leqslant 22.58^{\circ},-14 \leqslant h \leqslant 13,0 \leqslant k \leqslant 16\right.$, $0 \leqslant 1 \leqslant 20$) of which 3333 wereobserved $\left[F_{\circ} \geqslant 4 \sigma\left(F_{\mathrm{o}}\right)\right]$. Thedata were corrected for Lorentz-polarisation effects and an empirical absorption correction based on azimuthal scan data was applied (minimum, maximum transmission coefficients 0.482 , $0.556)$.
The structure was solved by direct methods and Fourierdifference syntheses. Refinement (on F^{2}) was by full-matrix least squares with isotropic thermal parameters for the carbon atoms and anisotropic displacement parameters for all other non-hydrogen atoms. The hydrogen atoms were placed in calculated positions and refined riding on their respective carbon atoms. A weighting scheme $\left\{\sum \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}, \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+\right.\right.$ (0.0349P $\left.)^{2}\right]$ where $\mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$ and σ was obtained from counting statistics\} gave a satisfactory agreement analysis. At convergence, R1 $=0.0399$ (observed data) and wR $2=0.0829$ (all data) for 327 parameters, $\mathrm{S}=0.999$, minimum, maximum residual electron density peaks $-0.647,1.124 \mathrm{e}^{-3}{ }^{-3}$.

All crystallographic calculations were performed using the SHELXTL-PC package ${ }^{20}$ and SHELXL 93 program. ${ }^{21}$

A cknowledgements

We thank the EPSRC and the U niversity of Edinburgh for financial support.

References

1 B. F. G. Johnson, R. D. Johnston and J. Lewis, J. Chem. Soc. A, 1968, 2865.
2 P. J. Dyson, B. F. G. Johnson, J. Lewis, M. M artinelli, D. Braga and F. G repioni, J. A m. Chem. Soc., 1993, 115, 9062.

3 D. Braga, F. Grepioni, E. Parisini, P. J. Dyson, A. J. Blake and B. F. G. Johnson, J. Chem. Soc., D alton Trans., 1993, 2951.

4 D. Braga, F. Grepioni, B. F. G. Johnson, H. Chen and J. Lewis, J. C hem. Soc., D alton Trans., 1991, 2559.

5 K. Jonas, E. D effense and D. H abermann, A ngew. Chem., Int. Ed. E ngl., 1983, 22, 716.
6 A . J. Edwards, N. E. L eadbetter, J. Lewis and P. R aithby, J. C hem. Soc., D alton Trans., 1995, 3785.
7 B. F. G. Johnson, P. J. Dyson, A. J. Blake and R. M allors, Organometallics, in the press.
8 J. L. H aggitt, B. F. G. Johnson, A. J. Blake and S. Parsons, J. Chem. Soc., C hem. Commun., 1995, 1263.
9 S. R. Drake, B. F. G. Johnson, J. Lewis, G. Conole and M . M cPartlin, J. C hem. Soc., D alton T rans., 1990, 995.
10 E. Sappa, A. Tiripicchio and P. Braunstein, Chem. Rev., 1983, 83, 203.

11 P. R. Raithby and M. J. Rosales, Adv. Inorg. Chem. Radiochem., 1985, 29, 169.
12 J. L. H aggitt and B. F. G. Johnson, unpublished work.
13 A . A . K oridze, N. M. A stakhova, F. M. D olgushin, A I. Y anovsky,
Y. Y. Struchkov and P. V. Petrovskii, Organometallics, 1995, 14, 2167.

14 U. Riaz, M. D. Curtis, A. R heingold and B. S. H aggerty, O rganometallics, 1990, 9, 2647.
15 H. Suzuki, Y. Takaya, T. Takemori and M. Tanaka, J. Am. Chem. Soc., 1994, 116, 10779.
16 Y. Chi, H.-Y. H su, S.-M . Peng and G.-H . Lee, J. Chem. Soc., Chem. Commun., 1991, 1023.
17 S. Aime, L. M ilone, E. Sappa and A. Tiripicchio, J. Chem. Soc., D alton Trans., 1977, 227.
18 E. Sappa, A. Tiripicchio and A. M. M anotti Lanfredi, J. Chem. Soc., D alton Trans., 1978, 552.
19 R. D. A dams and W. Wu, J. Cluster Sci., 1993, 4, 245.
20 G. M. Sheldrick, SHELXTL-PC, release 4.4, Siemens A nalytical X-R ay Instruments, M adison, WI, 1992.
21 G. M. Sheldrick, SHELXL 93, Program for structure refinement, U niversity of Göttingen, 1993.

[^0]: \dagger Present address: University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.

